Acta Cryst. (1959). 12, 660

The Crystal Structure of ZrAl₂

BY C. G. WILSON

Royal Military College of Science, Shrivenham, Berks., England

(Received 26 January 1959)

The crystal structure of $ZrAl_2$ has been determined from powder samples and imperfect single crystals. The unit cell is hexagonal with

a = 5.282, c = 8.748 Å; c/a = 1.656.

There are four $ZrAl_2$ units per cell. The calculated density is 4.56 g.cm.⁻³. The space group is $P6_3/mmc$. The structure is a Laves phase of the C_{14} , MgZn₂ type. The contraction of the Al substructure and the expansion of the Zr substructure support the general conclusions about the constitution of Laves phases.

McPherson & Hanson (1954) have published the equilibrium diagram for zirconium-aluminium and reported that the intermetallic compound $ZrAl_2$ has an orthorhombic unit cell with

$$a = 10.42, b = 7.22, c = 4.98 \text{ Å}$$
.

In order to investigate this structure more fully a sample of the alloy was prepared by arc-melting in argon and given to this laboratory by Miss J. R. Murray, A.E.R.E., Harwell. Micrographs taken from a polished and etched section showed that the sample was approximately single phase, the maximum grain size being about 0.3 mm. The impurity phase, which was estimated to be present in the approximate ratio 1:17. was later identified as the intermetallic compound Zr₂Al₃. Both Debye–Scherrer powder photographs and single-crystal (rotation and oscillation) photographs were used.

For the Debye-Scherrer films a precision camera of 19 cm. diameter (Adam, 1954) was kindly lent by Dr J. Adam, A.E.R.E., Harwell. The powder specimen was prepared by crushing and grinding with an agate mortar so as to pass through a $300 \times$ sieve and inserted in a 0.3 mm. radius Lindemann-glass tube. The ZrAl₂ alloy is very brittle and the sharpness of the diffraction lines indicated that annealing of the powder was not necessary. All the films were taken with filtered Cu K α radiation. The diffraction lines were measured with an illuminated fibre device similar to that of Lees (1955) with an accuracy of ± 0.005 cm. This instrument gave much better reproducibility of readings on the weak and very weak lines than was possible with a precision travelling microscope.

From the calculated values of $\sin^2 \theta$ it was found that all the lines could be indexed on a hexagonal unit cell with

$$a = 5.2824 \pm 0.0005$$
, $c = 8.7482 \pm 0.0005$ Å,
 $c/a = 1.656$.

An extrapolation method using the Nelson-Riley

function was used to obtain accurate cell dimensions. Confirmation of this unit cell was obtained by using very small and somewhat imperfect single crystals produced by crushing a piece of the specimen. Rotation and oscillation photographs were taken with both

Table 1. X-ray data

	$\sin^2 heta imes 10^4$	$\sin^2 heta imes 10^4$	Intensity	Intensity
hkl	(obs.)	(calc.)	(visual)	(calc.)
1010	289	287	w	10
0002	315	315	vw	6
1011	367	366	\boldsymbol{w}	8
1012	601	601	m-	10
$11\bar{2}0$	859	858	8	40
1013	992	990	vs	62
$20\overline{2}0$	1143	1143	m-	9
$11\overline{2}2$	1170	1170	vs	61
$20\overline{2}1$	1220	1221	m	32
0004	1250	1251	vvw	3
$10\overline{1}4$	1535	1535	vvw	2
$20\overline{2}3$	1843	1844	w	6
$21\overline{3}0$	1995	1996	vw	2
$21\overline{3}1$	2071	2075	vw	3
$10\overline{1}5$	2232	2235	m-	13
$21\overline{3}2$	2306	2307	vw	4
$30\bar{3}0$	2562	2565	m-	12
$21\overline{3}3$	2694	2696	8	4 0
0006	2806	2806	vvw	4
30 <u>3</u> 2	2872	2871	m	21
20 <u>2</u> 5)	3083	∫ 3082	m	32
10 <u>1</u> 6 ∫	0000	3085		02
2134	3237	3235	vvw	2
2240	3413	3410	m	22
$11\overline{2}6$	3654	3652	vvw	2
$22\overline{4}2$	3724	3721	vvw	3
21 3 5)	2025	f 3932	1 03	99
2026 ∫	0900) 3935	m	22
$31\overline{4}2$	4003	4005	vw	2
$10\overline{1}7$	4096	4092	vvw	3
$31\overline{4}3$	4392	4392	m	24
$40\overline{4}0$	4548	4544	vvw	2
$40\bar{4}1$	4622	4622	vw	7
$21\overline{3}6$	4783	4784	vvw	5
40 4 3)	5940	5242		0
1018	0249	5254	vw	ฮ
$30\overline{3}6$	5351	5351	vvw	2
$31\overline{4}5$	5631	5631	w	12

	$\sin^2 heta imes 10^4$	$\sin^2 heta imes 10^4$	Intensity	Intensity
hkl	(obs.)	(calc.)	(visual)	(calc.)
$\left. \begin{array}{c} 40\overline{4}4\\ 21\overline{3}7 \end{array} \right\}$	5789	$\begin{cases} 5784 \\ 5791 \end{cases}$	vvw	5
$11\overline{2}8$	5820	5821	m-	13
$41\overline{5}0$	5962	5961	m-	13
$\left. \begin{smallmatrix} 32\overline{5}3\\ 20\overline{2}8 \end{smallmatrix} \right\}$	6092	{ 6091 6092	m-	25
$22\overline{4}6$	6202	6200	m-	13
$41\overline{5}2$	6271	6270	m	26
$40\overline{4}5$	6483	6481	m	16
$10\overline{1}9$	6569	6570	vvw	3
$21\overline{3}8$	6953	6953	m-	15
$32\overline{5}5$	7332	7330	m-	15
$30\overline{3}8$	7518	7518	m-	17
$33\overline{6}0$	7660	7659	w	9
$50\overline{5}3$	7789	7789	m-	15
$42\overline{6}0$	7938	7942	vvw	6
$33\overline{6}2$	7970	7969	m-	18
$42\overline{6}1$	8016	8019	m-	17
$32\overline{5}6$	8183	8181	w	7
$21\overline{3}9$	8268	8268	w	8
$22\overline{4}8$	8368	8367	vvw	5
$\left. \begin{array}{c} 42\overline{6}3\\ 31\overline{4}8 \end{array} \right\}$	8647	$\begin{cases} 8638 \\ 8650 \end{cases}$	m	34
$41\overline{5}6$	8747	8747	m-	11
$2,0,\overline{4},10$	8889	8889	w	13
$50\overline{5}5$	9028	9027	m-	14
$32\overline{5}7$	9188	9187	w	13
$51\overline{6}3$	9487	9487	vs	74
1,0,1,11	9665	9665	m	27
		•	,	,

Table 1 (cont.)

vvw = very very weak, vw = very weak, w = weak, m - = medium weak, m = medium strong, s = strong, vs = very strong. All $sin^2 \theta$ values below dotted line refer to resolved

 α_1 components.

a and c as axes of rotation. The observed and calculated values of $\sin^2 \theta$ are given in Table 1.

Using the atomic volumes of the zirconium and aluminium atoms derived from the elementary crystalline forms, the proposed unit cell contains four units of ZrAl₂. The calculated density was 4.56 g.cm.⁻³; the density determined experimentally, using a bulk sample containing the impurity phase, was 4.42 g.cm.⁻³.

The visually estimated and calculated line intensities are given in Table 1. The calculated intensities were corrected for absorption but the temperature factor was ignored. The absorption factor was obtained from a table given in Klug & Alexander (1954) for cylindrical powder specimens. The value of $\mu r = 3 \cdot 1$, used for this purpose, was based on a calculated composite absorption coefficient for the compound and an experimentally determined powder density.

The single-crystal photographs indicated the following conditions for reflection: (000l), l=2n; $(hh2\bar{h}l)$, l=2n; (hkil), for h-k=3n, l=2n. Although several space groups are possible a good intensity agreement was found using $P6_3/mmc$ with the atoms in the following positions:

4 Zr in (f) positions:
$$\frac{1}{3}, \frac{2}{3}, z; z = \frac{1}{16}$$

6 Al in (h) positions: $x, 2x, \frac{1}{4}; x = -\frac{1}{6}$
2 Al in (b) positions: $0, 0, 0.$

No attempt was made to refine the Zr and the Al parameters. The proposed $ZrAl_2$ structure is thus a Laves phase of the C_{14} , MgZn₂ type. The interatomic distances are given in Table 2.

Zr-Zr:	2 at 3.28		and 2 at 3·24 Å	
Al-Al:	6 at 2.67		and 2 at 2.64 Å	
Zr-Al:	1 at 3.13,	1	at $3 \cdot 11$ Å and 1 at 3	∙08 Å

Discussion

In the ideal Laves phase of the C_{14} type which is formed when $c/a = (8/3)^{\frac{1}{2}} = 1.633$, the *B* atoms occupy corners of regular tetrahedra which are joined alternately point to point and base to base. The larger *A* atoms occupy the 'holes' formed by the tetrahedra to form another substructure which is characteristic of the phase. Any departure from $c/a = (8/3)^{\frac{1}{2}}$, leads to a change in the height of the *B* tetrahedra and consequent small differences in the interatomic distances in each substructure as observed in Table 2.

The important parameter governing the formation of Laves phases, when the c/a ratio is approximately correct, is the ratio of the atomic diameters of the two components d_A/d_B . In the ideal C₁₄ structure, in which A atoms touch each other and B atoms touch each other, $d_A/d_B = (1\cdot 5)^{\frac{1}{2}} = 1\cdot 225$. Berry & Raynor (1953) showed that if $W = d_A/d_B$ is less than 1.225, there should be a contraction of the B substructure and an expansion of the A substructure. Assuming the atomic diameters d_A and d_B to be the interatomic distances in pure metallic zirconium and aluminium, 3.17 and 2.862 Å respectively, we find for ZrAl₂ that W = 1.108. Although this is a rather low value there are at least two other compounds, viz. WFe2 and $MnBe_2$, for which W is smaller. On the other hand, it is interesting to note that there is no Laves phase of the C_{14} type with Al as the B atom reported in the list given by Berry & Raynor. The expected contraction of the B substructure and the expansion of the A substructure is clearly revealed by the interatomic distances given in Table 2.

Following Berry & Raynor, and using the maximum interatomic distances listed in Table 2, the parameters S_{AA} , S_{BB} and S_{AB} , are determined for ZrAl₂. These parameters represent the percentage deviation from the interatomic distances in the pure components and are defined by the expressions:

$$\begin{split} S_{AA} &= 100(d_{AA} - d_A)/d_A, \quad S_{BB} &= 100(d_{BB} - d_B)/d_B , \\ S_{AB} &= \frac{100[d_{AB} - \frac{1}{2}(d_A + d_B)]}{\frac{1}{2}(d_A + d_B)}. \end{split}$$

For ZrAl₂: $S_{AA} = 3.48\%$, $S_{BB} = -6.84\%$ and $S_{AB} = 3.79\%$. The values of S_{AA} , S_{BB} and S_{AB} for the known C_{14} Laves phases formed by zirconium as the A component are plotted against W in Fig. 1, to give a diagram similar to that first presented by Berry &

Fig. 1. Plot of S_{AA} , S_{BB} and S_{AB} against $W = d_A/d_B$ for Laves phases of the C_{14} type with zirconium as the 'A' component.

 $----S_{BB}; ----S_{AB}.$

Raynor. Aluminium appears to fit very well into this scheme and since chemically aluminium differs considerably from all other metals in this set, the importance of geometrical factors in the formation of the C_{14} phase seem to be over-riding.

The author would like to thank Mr F. J. Spooner and Mr D. K. Thomas of the Physics Branch, R.M.C.S., for their assistance in computation and film measurement and also Mr H. D. Mallon of the Metallurgy Branch, R.M.C.S., for the preparation and examination of micrographs of ZrAl₂. The friendly advice and guidance of Dr J. Adam, A.E.R.E., Harwell is gratefully acknowledged. This paper is published by permission of the Dean of the Royal Military College of Science.

References

ADAM, J. (1954). J. Sci. Instrum. 31, 131.

- BERRY, R. L. & RAYNOR, G. V. (1953). Acta Cryst. 6, 178.
- KLUG, H. P. & ALEXANDER, L. E. (1954). X-ray Diffraction Procedures, p. 155. New York: Wiley.
- LEES, C. S. (1955). J. Sci. Instrum. 32, 17.
- McPHERSON, D. J. & HANSON, M. (1954). Trans. Amer. Soc. Metals, 46, 354.

Acta Cryst. (1959). 12, 662

Transition Element—Rare Earth Compounds with the Cu₅Ca Structure

By J. H. WERNICK AND S. GELLER

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey, U.S.A.

(Received 26 January 1959 and in revised form 11 March 1959)

A number of new B_5A compounds, with A a rare earth or yttrium and B a transition element, Co, Ni, or Cu, having the Cu₅Ca structure, have been prepared. In most of the compounds, the interatomic distances are normal. However, Ce appears to have a valence substantially greater than three. Also, in Co₅Pr, Pr appears to have a valence slightly greater than three.

Introduction

In the course of a continuing study of the magnetic and structural properties of intermetallic compounds between rare earth and transition metals, a number of new compounds with the Cu₅Ca structure have been made. Some of the results of magnetic measurements have already been reported by Nesbitt *et al.* (1959). It is the purpose of this paper to report on the crystallographic investigations of these new compounds.

Experimental

Stoichiometric amounts of the constituents were melted by induction heating in fused Al_2O_3 or quartz

crucibles in an argon atmosphere.* The compounds appear to melt congruently as they form readily from the melt.

X-ray powder photographs were taken with Cr $K\alpha$ radiation and a Straumanis type Norelco camera (114.6 mm. diameter). Observed and calculated interplanar spacings are shown in Table 1.

These compounds, B_5A , belong to space group $P6/mmm(D_{6h}^1)$ with A in (a): 0, 0, 0, $2B_{\rm I}$ in (c): $\pm (\frac{1}{3}, \frac{2}{3}, 0)$, and $3B_{\rm II}$ in (g): $\frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

^{*} All of the rare earth elements, except Pr (99.9+%), and Y were of 99+% purity. Co and Ni 99.9+%; Cu 99.999%. The Nd was kindly supplied to us by Dr F. H. Spedding.